Сообщество - Энергетика
Добавить пост

Энергетика

264 поста 2 472 подписчика

Популярные теги в сообществе:

В Киргизии повысят цену на электричество сразу аж на 30%

По новостям вести 24 на днях гордо передали, что в стране повысят цену на 30% за кВт , до 1 сом, о том что 1 сом - 0,8 руб скромно промолчали))

Наследник Великого рода

Работаю в компании, которая устанавливает приборы учёта потребителям по заказу поставщиков электроэнергии (для абонентов это бесплатно).

Разбирал документы, вспомнил, улыбнуло.

Наследник Великого рода Документы, Счетчик электроэнергии, Чувашия, Энергетика (производство энергии)
Показать полностью 1

Игривое в быту, строптивое в море: как укротить статическое электричество на судне

Игривое в быту, строптивое в море: как укротить статическое электричество на судне Электричество, Научпоп, Море, Спг, Корабль, Капитан, Энергетика (производство энергии), Судно, Океан, Длиннопост

Редакция «Энергии+» посетила СПГ-бункеровщик «Дмитрий Менделеев», чтобы из первых рук получить ответы на вопросы о статическом электричестве на судне.

Липнущий к пакету кассовый чек, наэлектризованные пластмассовой расческой волосы, слишком крепкая «дружба» синтетической юбки с капроновыми колготками — бытовое статическое электричество ощущается больше как щекотка, чем удар током. Но скромный спутник некоторых материалов при особых условиях показывает характер. «Энергия+» выясняла, почему встреча со статическим электричеством в открытом море на судне может быть более ощутимой, чем торчащие в разные стороны волосы и прилипшая к телу одежда.

Статическое электричество возникает, когда электрический заряд накапливается на поверхности диэлектриков — веществ, относительно плохо проводящих электрический ток. Такие вещества из-за плохой проводимости «не пускают» заряд внутрь, и он вынужден ждать на поверхности, пока рядом не окажется проводящая среда.

Диэлектрики, как и все вещества в природе, состоят из атомов. Атомы обычно электрически нейтральны: в них одинаковое число положительно и отрицательно заряженных частиц — протонов и электронов. Протоны находятся в ядре, вокруг него на фиксированных расстояниях движутся электроны. Внешние электроны, расположенные дальше от ядра, слабее связаны с ним, могут «отрываться» от «своего» атома и прикрепляться к другому. Это происходит при трении одного тела о другое, поскольку «трутся» как раз электронные оболочки атомов.

Игривое в быту, строптивое в море: как укротить статическое электричество на судне Электричество, Научпоп, Море, Спг, Корабль, Капитан, Энергетика (производство энергии), Судно, Океан, Длиннопост

Вещества, плохо проводящие электрический ток, например пластик, не могут пропустить накопившийся на поверхности заряд внутрь себя и хранят его, пока рядом не окажется подходящий проводник: человек, пары воды в воздухе, металлический предмет

Число протонов в ядре трением не изменишь, поэтому тело, с которого «ушел» электрон, приобретает положительный заряд, а тело с избытком электронов — заряд со знаком «минус». Перераспределение электронов приводит к образованию электрических слоев с противоположными зарядами. Разряд во внешнюю среду происходит, когда заряженное тело оказывается слишком близко к заземленному предмету или предмету с другим электрическим потенциалом. Вот почему от наэлектризованного свитера при контакте с телом человека — объектом, умеренно проводящим ток, — видны проблески, хорошо заметные в темноте. Когда заряды между телами с разными потенциалами выравниваются, свитер «гаснет».

Помимо трения, электризацию может вызвать резкий перепад температур. При нагреве или охлаждении меняется скорость движения атомов и количество их столкновений (частота колебаний внутри молекулы). Из-за этого электроны могут спонтанно отделяться и скапливаться в определенном месте, образуя статический заряд. Причиной статического электричества может быть также радиация и резка металлов. При высоком уровне радиации повышается энергия электронов, появляются разнородно заряженные частицы, а из-за механического воздействия меняется структура материала и его электропроводность.

СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО У ВАС ДОМА

Шерстяные ковры, линолеум, лакированная мебель, синтетическая одежда и обувь, любые предметы, в составе которых есть непроводящие электрический ток материалы — резина, картон, сухое дерево, смолы — накапливают статическое электричество в быту. Избавиться от него поможет мытье полов и протирка поверхностей мокрой тряпкой (аргумент в пользу того, почему недостаточно пропылесосить квартиру). Чем влажнее воздух, тем выше его электропроводность, а значит, накопленным зарядам есть куда ускользнуть.

Золотая середина уровня влажности в доме — 45%. Если она меньше 30%, воздух будет сушить кожу и слизистые оболочки, а статическое электричество — быстро накапливаться. При высокой влажности, от 70%, увеличится отдача тепла от тела человека, на стенах появится грибок, начнет портиться мебель (влага — идеальная среда для размножения микроорганизмов).

Дефилируя в шерстяных носках по ковру, можно получить заряд напряжением в шесть киловольт. Если снизить влажность воздуха до 10–20%, включив на максимум приборы отопления, можно нашаркать заряды до 35 киловольт. Оба этих значения — обычное напряжение для высоковольтных линий электропередачи! Но из-за низких значений силы тока (количества накопленных диэлектриком электронов) такой «удар» будет ощущаться как легкая щекотка и пощипывание, безвредное для человека.

ПОЧЕМУ ЭЛЕКТРИЗУЕТСЯ СУДНО

Моряки накапливают заряды на себе, передвигаясь по полам и прикасаясь к пластиковым перилам судна. Из-за полимеров в отделке электризация может достигать очень высокой степени. Другие источники возникновения статических зарядов — синтетическая обивка мебели, верхняя одежда.

О наличии статического электричества на судне свидетельствует «слипание» страниц писчей бумаги между собой. Чем больше древесной массы в листе, тем ниже его электропроводность и выше способность накапливать заряды. Сильно наэлектризованные листы разделяются с треском.

Игривое в быту, строптивое в море: как укротить статическое электричество на судне Электричество, Научпоп, Море, Спг, Корабль, Капитан, Энергетика (производство энергии), Судно, Океан, Длиннопост

Статическое электричество — не самый лучший сосед для электроники на судах

Если для человека случай с «поведением» бумаги — это неудобство, то для электронных приборов — риск. Статическое электричество, проявляя свой «характер», может разрядами повредить их: на полевых транзисторах из-за высокого напряжения разрушается нанесенная на них тонкая оксидная пленка.

КАК УКРОТИТЬ СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО НА СУДНЕ

Статическое электричество останется изредка щекочущим спутником, если соблюдать простые правила. Прежде всего заземляются корпуса судов, все оборудование под напряжением и радиопередающие устройства — это называется защитным заземлением.

Морякам рекомендовано использовать обувь на кожаной подошве: ее проводящие свойства выше, чем у резиновой или капроновой. В составе одежды должно быть как можно меньше синтетики. Личному составу рекомендуют почаще прикасаться к металлическим предметам, чтобы избавляться от излишков зарядов на себе.

Игривое в быту, строптивое в море: как укротить статическое электричество на судне Электричество, Научпоп, Море, Спг, Корабль, Капитан, Энергетика (производство энергии), Судно, Океан, Длиннопост

Роман Емельянов

Капитан СПГ-бункеровщика «Дмитрий Менделеев»

Во время плавания никому из экипажа не разрешается в обычной или парадной одежде выходить на палубу, где находится управляющая электроника: нужна специальная форма из антистатического материала.

«С мобильными устройствами на палубе и капитанском мостике находиться также запрещено. На нашем судне есть специальный телефон, с которым можно выходить в общие пространства, — один на всю команду. Обычными смартфонами члены команды пользуются только в каютах, спортзале, столовой», — рассказывает капитан.

Игривое в быту, строптивое в море: как укротить статическое электричество на судне Электричество, Научпоп, Море, Спг, Корабль, Капитан, Энергетика (производство энергии), Судно, Океан, Длиннопост

Специальный телефон, с которым команде разрешается выходить на мостик СПГ-бункеровщика

Для облицовки кораблей применяют специальные неэлектризующие пластмассы, используют антистатические добавки. Важно чередовать пластик с заземленными электропроводными материалами. Обрамление металлом пластиковых ступенек трапов существенно снижает количество образующихся зарядов. В то же время, заменить весь пластик на корабле на металл попросту невозможно: из-за высокой плотности этого материала судно мигом пошло бы ко дну.

На судах без кондиционеров чаще проветривают помещения, чтобы запустить внутрь влажный морской воздух, капроновые канаты вымачивают в соленой воде: кристаллы солей оседают между волокнами, и канаты надолго теряют способность электризоваться.

Игривое в быту, строптивое в море: как укротить статическое электричество на судне Электричество, Научпоп, Море, Спг, Корабль, Капитан, Энергетика (производство энергии), Судно, Океан, Длиннопост

Влажность воздуха помогает устранить накопленные диэлектриками статические заряды, поэтому помещения на судне стараются чаще проветривать

Энергия в разных формах окружает нас везде и всюду, перетекая от объекта к объекту. Статическое электричество, в целом незаметное дома, заставляет считаться с собой в море. Если в квартире достаточно влажной уборки, чтобы снизить вероятность «щекотки» электронами, то на судне, как и на любом промышленном объекте, «дружить» со статическим электричеством помогает четкое соблюдение правил безопасности.

Оригинал статьи и другие материалы читайте на сайте журнала Энергия+:
https://e-plus.media/

Показать полностью 5

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии Энергетика (производство энергии), Научпоп, Топливо, Альтернативная энергетика, Водород, Биотопливо, Длиннопост

Фото iStock

Топить печь можно даже рыбой. Когда-то так делали в российских регионах, где много водоемов, но мало леса — в тундре на севере Сибири, в низовьях Дона и Волги. В качестве топлива использовали щуку, чехонь и воблу, считая их малоценными пищевыми продуктами на фоне рыбного изобилия. Этот старинный способ получения энергии сегодня назвали бы альтернативным и даже возобновляемым, но вряд ли такой источник удовлетворит энергетические нужды хотя бы небольшого современного города. Какие еще альтернативные источники энергии есть у человечества и в чем их особенности — разбиралась «Энергия+».

БИОТОПЛИВО

До сих пор почти 40% населения Земли используют дрова для обогрева жилья и приготовления пищи. Но если просто рубить дрова там, где их много, например на Севере и в Сибири, то для современных потребностей экономики леса может не хватить и в таких регионах. Кроме того, заготовка дров — трудно механизируемый процесс. Он требует большого количества рабочих рук, человеко-часов работы, что в современных условиях также не годится.

Есть и другие виды биотоплива. Например, торф: он используется с первобытных времен. Но сегодня сжигать его нерационально — из торфа можно извлекать множество полезных продуктов для медицины, косметологии, химической промышленности. Поэтому его можно считать значимым участником энергетики только в регионах, где его много.

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии Энергетика (производство энергии), Научпоп, Топливо, Альтернативная энергетика, Водород, Биотопливо, Длиннопост

Дрова до сих пор используются для приготовления пищи и обогрева жилья. Фото «Газпром нефть»

К биотопливу относятся и побочные продукты лесной и сельскохозяйственной промышленности: древесная щепа, опилки, ветки, пни, ботва, солома, навоз — все это можно измельчать и прессовать в древесные топливные брикеты и гранулы (пеллеты) или перегонять в жидкое топливо — биодизель, биоэтанол, газ. Для производства этих видов топлива также выращивают рапс, подсолнечник, масличную пальму, сахарный тростник. В регионах с обилием ресурсов сельского хозяйства, в том числе в России, эти источники могут закрыть до 20–30% местных потребностей в энергии. Но плодородных земель на планете и даже в нашей стране не так уж много, население растет, а потому площади охотнее отдают под пищевые культуры.

Автомобиль может ездить и на спирте, который тоже делается из растительного сырья. Именно на этом топливе работал один из первых автомобилей, разработанный Генри Фордом, пока спиртовые двигатели не были вытеснены более эффективными бензиновыми.

Перспективный вид биотоплива — микроводоросли, которые можно выращивать в естественных или искусственных водоемах. Микроводоросли — это одноклеточные организмы, которые очень быстро размножаются: клетки делятся каждые 20 минут, за это время происходит двукратное увеличение их общей массы, за час — восьмикратное. Если бы на Земле не было поедающих водоросли организмов, мороза и засухи, микрозелень покрыла бы «ковром» всю поверхность планеты за сутки-двое. В реальности с поверхности одного пруда площадью в один гектар можно снимать сотни тонн водорослей в год — это на порядки выше, чем у самой продуктивной сельхозкультуры на суше.

Но естественное ограничение масштабного развития водорослевой энергетики — климат. Далеко не везде их можно выращивать круглый год, и не везде они могут давать такие высокие урожаи даже летом. В открытых водоемах сырье для перспективного топлива поедают рыбы, насекомые и моллюски, а выращивать водоросли в закрытых бассейнах — с принудительной подачей воздуха, искусственным поддержанием температурного и светового режима, — слишком накладно.

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии Энергетика (производство энергии), Научпоп, Топливо, Альтернативная энергетика, Водород, Биотопливо, Длиннопост

Экономически оправдано делать топливо из микроводорослей там, где их можно выращивать круглый год в естественных условиях

ДЫХАНИЕ МИРОВОГО ОКЕАНА

Почему на морских берегах возникают приливы? Это действие сил притяжения Луны и Солнца. В местах с высокими приливными волнами можно строить плотины, примерно такие же, как плотины гидроэлектростанций, с вращаемыми водой турбинами. Мощность такой станции прямо пропорциональна площади залива и квадрату средней высоты прилива. В России эта средняя высота максимальна в узких заливах Охотского и Белого морей и составляет около 6 метров.

Сейчас на Земле действует около десятка приливных станций и строится ряд новых, в том числе в России. Сложности развития приливной энергетики связаны с малым числом мест, где приливы высокие, большой стоимостью строительства и опасениями экологического характера: если перегораживать плотинами морские заливы, как это подействует на экосистемы?

ТЕПЛО ГЛУБИН ЗЕМЛИ И ИНЕРЦИЯ ЛЕТА

Специалисты по разведке и добыче нефти и газа знают, что недра на больших глубинах сильно разогреты — на 3–4 километрах температура жидкости и газа достигает ста градусов Цельсия и выше. Дальше еще горячее — это действие теплового потока из земных глубин. В зонах разломов земной коры, в горных и сейсмически активных районах на поверхность выходит горячая вода или перегретый пар, которые можно использовать для отопления и выработки электроэнергии.

Есть хорошие примеры развития геотермальной энергетики на Камчатке и на Кавказе — в этих регионах тепло из недр Земли выходит на поверхность. К сожалению, таких мест на планете не настолько много, чтобы геотермальная энергетика стала одним из лидеров в генерации энергии. Добывать же тепло с глубин в несколько километров можно, но это дороже и сложнее технологически, чем с поверхности.

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии Энергетика (производство энергии), Научпоп, Топливо, Альтернативная энергетика, Водород, Биотопливо, Длиннопост

Превращать в электричество тепло из земных недр выгодно в регионах, где это тепло выходит на поверхность

Еще один источник энергии — тепло верхних слоев земной коры, которые прогреваются солнцем. Летом оно прогревает породу до некоторой глубины, а зимой на этой глубине тепло сохраняется — слои грунта выступают в роли аккумулятора. В средней полосе России зимой земля промерзает обычно на глубину 0,5–1 метра, ниже теплее: земля по инерции сохраняет летнее тепло, которое можно использовать для обогрева помещений. Сложность использования такого источника — в балансе, который возможен не везде: летом должно быть достаточно жарко, чтобы грунт хорошо прогрелся, а зимой не слишком холодно, чтобы он остался теплым.

ВОДОРОДНАЯ ЭНЕРГЕТИКА

Водород — самый распространенный элемент во Вселенной: 89% всех атомов — это атомы водорода. Много его и на Земле: крупнейший доступный нам «склад» водорода — морская вода, в ней «хранится» больше 10^23 тонн водорода, или сто миллионов миллиардов тонн. При сгорании единицы массы водорода генерируется втрое больше тепла, чем при сгорании природного газа, и теоретически водорода только из Мирового океана хватит для удовлетворения всех наших потребностей в энергии в течение миллионов лет, поэтому сейчас о «водородной экономике» говорят много. Увы, пока только говорят.

Дело в том, что весь водород на Земле находится в связанном состоянии. Его надо «отцепить» от кислорода в молекуле воды или от углерода в молекуле природного газа, а этот процесс оставляет углеродный след и требует больших затрат энергии. В результате ценность и чистота водорода, полученного на выходе, меньше, чем энергетические вложения на его «освобождение».

Водородная энергетика будет оправдана при наличии дешевой и экологически чистой электроэнергии. Например, водород можно вырабатывать методом электролиза воды, используя энергию гидростанций, ветровых и солнечных станций. Это нестабильные источники, они дают слишком много энергии в определенные периоды — и тогда излишек можно направить на выработку водорода. С помощью электролиза сегодня получают лишь 5% водорода в мире, остальные 95% извлекают из угля или природного газа, что сопряжено с выбросами парниковых газов и загрязняющих веществ в атмосферу. Кроме того, и газ, и уголь — готовое топливо, и выгоднее использовать его непосредственно.

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии Энергетика (производство энергии), Научпоп, Топливо, Альтернативная энергетика, Водород, Биотопливо, Длиннопост

Главная и пока нерешенная задача водородной энергетики — извлекать из воды или природного газа достаточно водорода, не увеличивая углеродный след и не затрачивая больше энергии, чем при сжигании самого водорода

Другой путь — найти много свободного водорода в естественном состоянии, например, выходящего из глубин Земли. Такой водород раньше находили случайно: в 1987 году в Мали у села Буракебугу бурили скважины для поиска питьевой воды и обнаружили чистый водород, который сейчас используется для выработки энергии для села. В последние 10–15 лет чистый водород начали искать целенаправленно. Сложность в том, что у него нет ни цвета, ни запаха. Выходя на земную поверхность, он, будучи легче воздуха, быстро улетучивается. Поиски пока не дали ощутимых результатов.

С водородом связана и другая отрасль энергетики — атомная. Более полувека ученые всего мира бьются над созданием управляемого термоядерного синтеза (УТС). Это слияние двух атомов водорода с образованием атома гелия, которое дает колоссальный энергетический эффект: 10 граммов смеси изотопов водорода (дейтерия и трития) дают столько же энергии, сколько один килограмм урана в атомном реакторе. Главная сложность связана с тем, что реакция синтеза протекает при температуре в миллионы градусов. Вещество сначала нужно нагреть, потратив колоссальное количество энергии, а затем — удержать в вакууме, чтобы оно не соприкоснулось со стенками реактора для синтеза и не уничтожило их. Пока эти задачи решены лишь частично, в исследовательских установках.

НЕОБЫЧНЫЕ УГЛЕВОДОРОДЫ

Необычные углеводороды — это те же углеводороды, что составляют нефть и газ, но находятся в более сложных условиях залегания, например в мелко-трещиноватой породе, из которой их трудно и дорого извлекать. Плюс в том, что таких углеводородов, возможно, на порядок больше, чем «обычных» — осталось лишь разработать технологии, делающие их добычу рентабельной и экологичной.

Источники энергии, о которых мы рассказали, могут быть использованы в тех или иных пропорциях в разных регионах в зависимости от их конкретных условий. Нет ничего, что можно сбросить со счетов как бесполезное и бесперспективное. В то же время, ничто не может стать панацеей, решающей все энергетические задачи человечества без помощи других источников.

Водоросли, приливы, тепло земли, водород и другие: пять преимуществ и шесть недостатков альтернативных источников энергии Энергетика (производство энергии), Научпоп, Топливо, Альтернативная энергетика, Водород, Биотопливо, Длиннопост

Основным источником энергии еще много лет будут ископаемые ресурсы: уголь, нефть и газ

Пока примерно 80% своих потребностей в энергии человечество обеспечивает за счет угля, нефти и газа. За последние 50–60 лет эта доля существенно не изменилась, и в обозримом будущем именно ископаемые углеводороды будут составлять основу нашего энергетического «рациона», а остальное будет добавляться к ним, как салаты, гарниры или десерты к основному блюду.

Оригинал статьи и другие материалы читайте на сайте журнала Энергия+:
https://e-plus.media/

Показать полностью 5

Как из опилок, пищевых отходов и даже навоза получают энергоресурс под названием биотопливо

Как из опилок, пищевых отходов и даже навоза получают энергоресурс под названием биотопливо Энергетика (производство энергии), Научпоп, Россия, Топливо, Биотопливо, Длиннопост

Фото iStock

ЧТО ТАКОЕ БИОТОПЛИВО

Все, что было или будет едой, может стать и топливом. Неважно, где вы сейчас находитесь: в городской квартире, избушке на краю леса или в бунгало на берегу моря — рядом с вами точно есть хотя бы один источник биологического топлива. Главное условие — органическое происхождение сырья.

Биотопливо появилось еще тогда, когда об энергетике никто не задумывался. Люди тысячелетиями грелись у костра и топили печки, и даже успели изобрести автомобили на дровах (первая такая машина появилась в 1900 году). Биотопливо — это горючее из растительного или животного сырья, продуктов жизнедеятельности и органических отходов. Почти как вода, оно имеет три «агрегатных состояния».

ТВЕРДОЕ БИОТОПЛИВО

Это дрова и все, чем их можно заменить: опилки, кора, солома, щепки, даже ореховая скорлупа и шелуха от семечек. Если все это спрессовать в гранулы, получатся пеллеты: дешевый аналог дров, который оставляет меньше золы и почти не дымит. Твердым биотопливом можно топить печи, а можно сжигать его на тепловых электростанциях и получать электричество.

В мире работают сотни таких станций, несколько есть и в России. Они используются для теплоснабжения небольших городов, сел или отдельных объектов. Количество вырабатываемого на таких станциях электричества зависит от тепловой мощности и составляет десятки мегаватт.

Как из опилок, пищевых отходов и даже навоза получают энергоресурс под названием биотопливо Энергетика (производство энергии), Научпоп, Россия, Топливо, Биотопливо, Длиннопост

Пеллеты — аналог дров из спрессованных опилок, коры, соломы или щепок

ЖИДКОЕ БИОТОПЛИВО

Это спирты, которые используются как добавка к бензину. Самое популярное жидкое биотопливо (и самое распространенное в мире) — биоэтанол, который получают из богатых сахаром и крахмалом культур: кукурузы, сахарной свеклы, картофеля, зерна, сахарного тростника. Есть еще биодизель: основное сырье для него — растительные масла: рапсовое, пальмовое, соевое, кокосовое. Биологический дизель могут смешивать с нефтяным и использовать как самостоятельное топливо.

Есть и другие варианты жидкого биотоплива, например биобензин, который делают из микроводорослей. В 2019 году российские ученые из МГУ и Объединенного института высоких температур РАН представили новую технологию, позволяющую получать биобензин с помощью гидротермального сжижения. Мокрую биомассу нагревают до температуры 370 градусов Цельсия и сжимают под давлением 25 мегапаскалей. В результате получается бионефть, из которой затем выделяют бензиновую фракцию. Преимущество способа в том, что сырье не нужно предварительно сушить, как требовалось ранее, и в бионефть преобразуются все компоненты микроводорослей.

Как из опилок, пищевых отходов и даже навоза получают энергоресурс под названием биотопливо Энергетика (производство энергии), Научпоп, Россия, Топливо, Биотопливо, Длиннопост

Жидкое биотопливо

ГАЗООБРАЗНОЕ БИОТОПЛИВО

Газообразное биотопливо получают при ферментации (контролируемом гниении) биомассы — органических отходов — гнилых фруктов и овощей, отходов мясо- или рыбопереработки. В специальных биогазовых установках органические вещества разлагаются с помощью микроорганизмов, и образуется биогаз, состоящий из метана и углекислого газа.

В зависимости от требуемых земельных ресурсов и энергоемкости растительное сырье разделяют на поколения:

I поколение — сельскохозяйственные культуры, которые содержат много жиров, крахмала, сахаров и требуют больших площадей для выращивания;II поколение — несъедобные остатки растений: древесина, солома, лузга, содержащие целлюлозу и лигнин;III поколение — водоросли, для выращивания которых не требуется земельных ресурсов.

КАК ДЕЛАЮТ БИОТОПЛИВО ИЗ НАВОЗА, ГЛИНЫ И ОРГАНИЧЕСКИХ ОТХОДОВ

Там, где дрова всегда были драгоценным ресурсом, люди придумали им дешевую замену — навоз. Отходы пищеварения содержат много простых органических веществ с высокой калорийностью и дают почти столько же энергии, сколько дрова. Главное — как следует их высушить.

Проще всего собрать готовые «лепешки» и на несколько месяцев отправить их в хорошо проветриваемое помещение, где они будут сохнуть и избавляться от запаха. Еще вариант — долго копить навоз, чтобы он спрессовался и стал похож на пластилин, а затем распилить на брикеты — и тоже отправить на просушку. Третий способ — перемешать его с соломой или сеном, слепить кирпичи или лепешки, высушить. Самый технологичный метод приготовления таких брикетов — смешать сырье с растительным наполнителем, загрузить в форму и сжать с помощью пресса.

Как из опилок, пищевых отходов и даже навоза получают энергоресурс под названием биотопливо Энергетика (производство энергии), Научпоп, Россия, Топливо, Биотопливо, Длиннопост

Высушенный навоз домашнего скота дает почти столько же энергии при сжигании, что и дрова

Делать топливные брикеты можно также из глины, смешанной с бумагой, шелухой, скорлупой, соломой в пропорции 1:10. К этой смеси добавляют немного воды, чтобы получилась густая «каша». Она закладывается в форму и отправляется под пресс, а готовые брикеты потом сушатся на солнце.

Чтобы сделать биогаз, помимо сырья, то есть органических отходов вперемешку с водой, понадобится биореактор, живые бактерии и газгольдер — резервуар, куда поступает и где хранится готовый горючий продукт. Отходы помещаются в биореактор, «бродят», в процессе выделяется биогаз. Все, что перебродило, отправляется в специальный отстойник и затем становится удобрением. Биогаз поступает в газгольдер и оттуда к газовому устройству.

ЧТО ДАЛЬШЕ

Один из плюсов биотоплива — возобновляемость. Трава всегда растет, а скот всегда ее перерабатывает. Но трава, например для жидкого биотоплива, годится не любая, нужны «энергетические растения» — важные сельскохозяйственные культуры, источник пищи и кормов: сахарная свекла, картофель, зерновые. Для их выращивания требуется земля, вода, удобрения, техника и горючесмазочные материалы.

Как из опилок, пищевых отходов и даже навоза получают энергоресурс под названием биотопливо Энергетика (производство энергии), Научпоп, Россия, Топливо, Биотопливо, Длиннопост

Растения, из которых делают биотопливо, должны быть неприхотливыми

Чтобы две «ипостаси» сельскохозяйственных растений не конкурировали между собой, производители биотоплива ищут виды, которые станут чисто энергетическими культурами. Успешные кандидаты есть: например неприхотливый южный злак мискантус (его также называют веерник). Он не боится жары и вредителей, нетребователен к почвам и готов расти там, где другие злаки даже колоситься не будут.

Деревья тоже выращивают ради энергетики: на Земле есть целые энергетические леса. Породы деревьев и кустарников в них собраны по «скоростному» принципу: тополь, ива, акация — все они быстро растут. Ученые считают биологическое топливо перспективным, и все-таки ему пока далеко до ископаемого, которое обеспечивает больше 70% от общего мирового потребления энергии. Среди возобновляемых источников энергии биотопливо на последних позициях: здесь преобладает гидроэнергетика (около 15% от мирового производства энергии в 2021 году), далее — ветряная (около 6%), солнечная (около 4%) и биотопливо (около 2%). Чаще всего биотопливо используется для отопления частных домов, гораздо меньшая доля задействована в промышленности и в транспортной отрасли.

Оригинал статьи и другие материалы читайте на сайте журнала Энергия+

Показать полностью 4

СКОЛЬКО ЭНЕРГИИ СОДЕРЖИТСЯ В МОЛНИИ, И МОЖНО ЛИ ЕЕ ИСПОЛЬЗОВАТЬ В БЫТУ

СКОЛЬКО ЭНЕРГИИ СОДЕРЖИТСЯ В МОЛНИИ, И МОЖНО ЛИ ЕЕ ИСПОЛЬЗОВАТЬ В БЫТУ Электричество, Наука, Электрический ток, Энергия

Фото: Istock

Российская наука начала изучать молнии несколько веков назад: автор одной из первых физических теорий происходящего во время грозы — Михаил Ломоносов. Электрическую природу молнии подтвердил один из отцов-основателей США — Бенджамин Франклин. Он придумал эксперимент и сам его осуществил: запустил в грозовое облако воздушного змея с токопроводящим тросом. Оказалось, такой зонд накапливает электрический заряд из окружающего воздуха. «Энергия+» разбиралась, можно ли направить молнию в созидательное русло.

Колоссальная энергия этого природного явления очевидна – достаточно посмотреть на деревья, в которые угодила молния во время грозы. В среднем один грозовой разряд несет в себе гигаджоуль энергии. Этого достаточно, чтобы вскипятить почти три тонны воды. Если переводить в другие единицы измерения, получается около 240 тысяч килокалорий или 277 киловатт-часов. Выглядит многообещающе, но использовать этот потенциал пока не получается.

Во-первых, указанная выше величина — средняя, насколько мощной будет каждая отдельная молния предсказать трудно. Во-вторых, вероятность появления грозового разряда зависит от огромного количества причин: температуры воздуха, его влажности, характеристик облака и земной поверхности под ним, а также других факторов. В-третьих, вся эта энергия почти равномерно рассеивается по всей длине разряда и до земли доходит лишь малая ее часть.

Идея использовать атмосферное электричество как альтернативный источник энергии не нова. Но перспективы ее практического воплощения туманны. Грозовая ферма должна иметь множество приемников заряда высотой хотя бы до нижней границы облаков. Также необходимо оборудование для получения, трансформации и сохранения тока силой в десятки тысяч ампер, полученного за очень короткие промежутки времени — десятки микросекунд.

Рассчитывать систему придется с большим запасом — характеристики разрядов варьируются в очень больших пределах. Более того, предсказать, куда именно ударит молния на длительный промежуток времени практически невозможно. Сегодня существуют разработки по индуцированию разрядов в грозовых облаках лазером, но требуемая для этого энергия пока выше той, что можно получить по итогам процедуры.

Оригинал статьи и другие материалы читайте на сайте журнала:
https://e-plus.media/

Показать полностью

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить

В научно-популярной литературе за водородом закрепилась слава основы экономики будущего. Хотя в промышленности его активно используют едва ли не больше века. Он незаменим в нефтехимии, производстве удобрений и синтетического топлива, а также в энергетике. Но не в качестве энергоносителя — эту роль водороду пока только обещают. Naked Science рассказывает, насколько важное, хоть и не слишком заметное, место занимает в жизни каждого землянина легчайший газ и какое у него будущее.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Водород — первый элемент в периодической таблице. Его атом состоит всего из одного протона и одного электрона (самый распространенный из изотопов, еще есть дейтерий и протий, у которых есть дополнительно один и два нейтрона в ядре соответственно). При нуле градусов Цельсия газообразный водород имеет плотность всего около 90 граммов на кубический метр, а в сжиженном состоянии (минус 253 градуса Цельсия) — 70 килограммов на кубический метр. Это самый распространенный химический элемент во Вселенной (порядка 88,6 процента от всех атомов). На фото: в 2020 году Олимпийский огонь в Токио впервые питался от полностью «зеленого» водорода вместо природного газа, что стало одним из символов будущего / ©Associated Press

В чистом виде водород удалось получить ко второй половине XVII века воздействием кислот на металлы. Бесцветный газ без запаха и вкуса легко сгорал с характерным щелчком, в результате этой химической реакции образовывалась вода. За такое очевидное свойство газ и получил свое название. К 1930-м годам большинство свойств водорода уже были известны ученым. Благодаря его простоте — атом H состоит лишь из протона и электрона — с его помощью удалось изучить множество явлений в мире элементарных частиц. Однако и за рамками теоретических исследований у водорода нашлось немало применений.

До конца XIX века водород в чистом виде либо в смеси с другими газами использовали как топливо для осветительных приборов, экспериментальных двигателей внутреннего сгорания и наполняли им воздушные шары. Последняя роль принесла ему всемирную известность благодаря расцвету дирижаблей. Но по-настоящему незаменимым для мировой экономики водород стал в результате работы двух великих немецких химиков Фрица Габера и Карла Боша. Созданный ими химический процесс позволял в промышленных масштабах получать аммиак — основное сырье для производства удобрений.

Газ, без которого не было бы современного мира

Несмотря на то что в земной атмосфере азот трудно назвать дефицитным, этот обязательный компонент биологических молекул большинству живых существ недоступен: они не способны его усваивать в газообразном виде. В естественных условиях биосфера пополняется соединениями азота в основном благодаря почвенным бактериям. Но до верхних ступеней пищевой цепочки доходит лишь малая их часть. Поэтому без удобрений сельское хозяйство просто не способно обеспечить сколь-нибудь развитое общество необходимым количеством калорий.

Пока на помощь человечеству не пришло изобретение Габера, усовершенствованное Бошем, сырьем для азотных удобрений служили гуано (останки помета птиц) и природный нитрат натрия (натриевая, или чилийская, селитра). С этими ресурсами — две проблемы: во-первых, их запасы конечны, да и богатые месторождения есть не везде; а во-вторых, добывать их приходилось фактически рабским трудом в нечеловеческих условиях (рабочие руки очень быстро заканчивались). Все возрастающий спрос на удобрения во время индустриализации резко поднял важность и гуано, и чилийской селитры. Результатом стали даже несколько войн из-за древнего птичьего помета (например, Вторая тихоокеанская война 1879-1883 годов, в ходе которой Чили силой забрала месторождения гуано у Боливии).

Зато в 1910 году мир изменился навсегда. Химическая промышленность получила экономически выгодный способ выработки аммиака. Для этого требуется азот, водород, катализатор, а также высокие температура и давление. С тех пор вклад процесса Габера в процветание человечества можно назвать едва ли не определяющим для нынешней цивилизации. По некоторым оценкам, до половины атомов азота в телах жителей развитых стран попали в пищевую цепочку исключительно благодаря промышленно синтезированным азотным удобрениям. Не менее двух пятых современного человечества без этого изобретения не существовало бы. Естественно, чудо не бесплатно: на производство аммиака уходит около двух процентов всей потребляемой в мире первичной энергии.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Упрощенная схема современного химического завода, применяющего процесс Габера—Боша для производства аммиака. Фиолетово-розовый овал — первичный риформер, на который подается метан (CH4) и вода (H2O), здесь происходит частичное разложение природного газа на молекулярный водород (H2) и оксид углерода (CO). Затем в систему подается очищенный воздух (кислород и азот), которые во вторичном риформере (горчичный овал) смешиваются с продуктами первичного и помогают дополнительно разложить метан. Далее смесь поступает в реактор, где при помощи катализатора и с добавлением воды метан окончательно расщепляется, а угарный газ окисляется до углекислого. На выходе получается синтез-газ из азота, водорода и CO2, его сжимают и отправляют на очистку от углекислоты в скруббер. После него азот и водород уже снова под давлением дополнительно нагреваются и идут непосредственно в реактор производства аммиака (второй горчичный овал). Выход продукта не стопроцентный, поэтому непрореагировавшие азот с водородом после охлаждения и сепарации аммиака снова поступают в реактор / ©Francis E Williams, Wikimedia

Обогащение нефтепродуктов

Нефтехимическая отрасль — второй основной потребитель водорода в мире. Он используется для целого ряда процессов, позволяющих повышать качество нефтепродуктов и природного газа. В их числе — гидроочистка, гидрокрекинг, гидродеалкилирование. Если не вдаваться в детали, то все эти процедуры представляют собой ту или иную реализацию гидрогенолиза. То есть расщепления в присутствии водорода связей между двумя атомами углерода либо атомом углерода и примесями. В качестве последних, например, выступают сера или соединения азота. Они не только становятся сильными загрязнителями при сгорании, но и отравляют катализаторы на последующих этапах нефтепереработки. Можно смело сказать, что без использования водорода такого качества и разнообразия углеводородов никогда бы не получилось.

И многое-многое другое

Оставшиеся после нефтепереработки и производства аммиака 10 процентов всего потребляемого человечеством водорода уходят почти полностью на химическую и пищевую промышленность. В первую очередь — для гидрирования. Это реакция присоединения водорода к той или иной молекуле. Если гидрировать углекислый газ, получится метанол. А он, в свою очередь, чрезвычайно востребованное сырье для производства полимеров (точнее, из него делают формальдегид, необходимый для этого) и широко используемая добавка в бензин. К тому же метанол сам по себе — перспективное экологичное топливо для ДВС. Сейчас для этого предназначения его производят в основном из биологического сырья, но в перспективе предпочтительнее техпроцесс на основе водорода.

Еще один продукт, который немыслим без водорода, — маргарин. Его делают из смеси растительных жиров (масел), которые сгущаются (насыщаются) гидрированием. В последние годы на волне борьбы с трансжирами эта сфера использования водорода плавно сходит на нет.

Остальные области применения водорода потребляют менее пяти процентов от общего его производства в мире. Среди них одна из наиболее любопытных, но при этом малоизвестных — в качестве теплоносителя систем охлаждения мощных электрогенераторов (от 60 мегаватт и выше). А самая зрелищная — как ракетное топливо, например в носителях Delta IV Heavy, Space Launch System и «Чанчжэн-5». Кроме того, сравнительно много водорода потребляет микроэлектронная индустрия, использующая его для стабилизации аморфного кремния, производство и обработка особо чистых металлов, а также фармацевтика. Эти ниши по объемам потребляемого водорода незначительны, но их роль в современной экономике колоссальна.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

В космонавтике и ракетостроении водород нашел свое место и в качестве горючего, и в качестве энергоносителя. Кислород-водородные двигатели «Спейс шаттла» отправили в космос 355 астронавтов из 16 стран (многих по несколько раз) и почти 1600 тонн грузов, включая львиную долю конструкционных элементов и модулей МКС. Аналогичная топливная пара использовалась или используется на некоторых американских, индийских, японских и китайских ракетах, а также в советской «Энергии». Для выработки электричества водородные топливные элементы применялись в программе «Аполлон» и разрабатывались для «Бурана». На фото: упрощенная версия двигателя «Спейс шаттла» (SSME, RS-25) — AR-22 — в ходе испытаний на возможность быстрого повторного использования для проекта космоплана XS-1 / ©Aerojet Rocketdyne

Потенциальный энергоноситель будущего

Получается, водород уже давно и прочно закрепился в мировой экономике и промышленности. В основном, конечно, как сырье для химических процессов. Но у него есть огромный потенциал в качестве энергоносителя и накопителя энергии. Килограмм водорода при сжигании в идеальных условиях и без учета потерь высвободит более 140 мегаджоулей энергии. Для сравнения: килограмм дизельного топлива содержит около 45 мегаджоулей, бензина — 46, а природного газа (метана) — 53,6 мегаджоуля. При этом водород можно получать с помощью электричества из полностью возобновляемых источников энергии. А при его горении не возникает вредных веществ — только водяной пар. Некоторые количества оксидов азота в выхлопе водородного ДВС возможны, если смесь с воздухом не стехиометрическая (оптимальная для сгорания топлива).

Эти два свойства водорода: высокая удельная энергия и потенциальная «зеленость» — не дают покоя инженерам и ученым, стремящимся сделать мир лучше. Идея водородной экономики, то есть такого уклада энергетики и промышленности, в котором роль основного энергоносителя выполняет водород, впервые была сформулирована еще в 1923 году британским ученым Джоном Холдейном (J. B. S. Haldane). Но до 1970-х развития она не получала и лишь к 1990-м оформилась в виде хорошо проработанной концепции.

Одна из ключевых ролей водорода в ней — накопитель энергии: когда генерация избыточна, ее направляют на выработку газа, в пики потребления его расходуют. Нынешнюю экономику в каком-то смысле можно назвать водородной, ведь этот газ уже играет исключительно важную роль. Однако он используется почти полностью как реагент для химических процессов и почти не задействован в энергетике. В перспективе же требуется уйти от ископаемого топлива, чтобы снизить нагрузку на окружающую среду, минимизировать выбросы парниковых газов и микрочастиц сажи.

Водород имеет все шансы заместить углеводороды в тех отраслях, где не справится одно лишь зеленое электричество: там, где энергоноситель трудно заменим, — и сделать более экологичными критически важные высокотехнологичные отрасли вроде микроэлектроники. Например, в металлургии, производстве цемента и на транспорте, в первую очередь грузовом наземном и водном. Перед этим придется решить несколько инженерных проблем. Так, ни один современный массовый двигатель внутреннего сгорания не может работать на чистом водороде. У этого газа низкая энергетическая плотность (количество энергии в литре объема), поэтому через камеру сгорания его необходимо нагнетать больше (втрое больше, чем метана для выполнения той же работы). Кроме того, водород горит с очень высокой скоростью, на грани детонации — с этим его свойством, кстати, связан простейший способ его обнаружения в продуктах реакции на уроках физики: он вспыхивает с характерным хлопком. Сейчас идут разработки многотопливных двигателей, способных в числе прочего работать на чистом водороде.

Альтернатива прямому сжиганию — топливные элементы, вырабатывающие электричество из водорода и кислорода воздуха. Это такие электрохимические ячейки, в которых горючее окисляется без пламени, только за счет присутствия катализатора. Но их эффективность пока едва превышает 60 процентов, а стоимость высока, плюс водород должен быть максимально чистым, иначе малейшие примеси быстро отравят катализатор. Поэтому в качестве первого этапа постепенного перехода от углеродной экономики к водородной применяется добавление этого газа в метан. Получившуюся смесь можно без радикальных изменений в существующем оборудовании использовать как газомоторное топливо, а также для отопления, приготовления пищи и выработки электричества.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Топливные элементы подкупают своей простотой и высочайшим теоретическим КПД (более 90 процентов). Как концептуально, так и в изготовлении — их буквально можно сделать дома из доступных каждому материалов. Однако эффективность такого изделия будет весьма скромной. Для промышленного применения требуются дорогие катализаторы из металлов платиновой группы и немало труда исследователей, которые ищут оптимальную их конфигурацию. Массово производимые топливные элементы едва преодолели порог 60 процентов КПД и стоят очень дорого. Поэтому тепловые ДВС, пусть и неспособные преодолеть «проклятье цикла Карно» (даже в теории — не более 44 процентов КПД), все равно у них выигрывают. На фото: водородный топливный элемент из набора для образовательных игр выходной мощностью 0,27 ватта и стоимостью порядка 280 долларов / ©Horizon Educational

Такое, безусловно, «половинчатое» решение лишь незначительно озеленяет промышленность, частично снижая ее углеродный след и выбросы других загрязнений в атмосферу. Тем не менее этот план неплохо сработает в том случае, если источник водорода сам по себе возобновляемый и не повышает содержание углекислого газа в природе.

«Серо-буро-малиновый» водород

Чтобы просто и легко различать водород по источнику энергии для его выработки или непосредственно техпроцессу, придумали схему цветового кодирования. По идее она должна сделать определение «экологичности» и «безуглеродности» энергоносителя удобнее, однако существующих и перспективных промышленных способов получения водорода довольно много. Так что в результате образовалась целая палитра.

Зеленый. Наиболее дружелюбный по отношению к окружающей среде, обладает самым незначительным углеродным следом (даже если считать выбросы в ходе производства оборудования). Водород в этом случае получают путем электролиза воды, а необходимую энергию поставляют возобновляемые источники — ветряки, солнечные панели, гидро-, приливные и геотермальные электростанции. Главная проблема такого водорода заключается в его высокой стоимости, из-за низкой эффективности электролиза (60-80 процентов), энергозатрат (на килограмм продукта нужно потратить порядка 50 киловатт-часов электричества) и дороговизны зеленых генераторов. На этот метод приходится меньше пяти процентов всего производимого водорода. Существенный плюс электролиза — на выходе получается газ без примесей, любые другие методы требуют дополнительной очистки.

Серый. Самый широко используемый метод получения водорода (свыше половины всех объемов в мире) — паровая конверсия (риформинг) метана. По сути, это первый этап процесса Габера—Боша. В результате атмосфера пополняется изрядными количествами углекислоты, а также метана и угарного газа (из-за утечек). Такой водород невероятно дешев, ни один другой метод не может соревноваться с ним по цене. Если применяется система улавливания углекислого газа (CCS) на выходе из установки, то получается голубой водород. Он чуть более дружелюбен к окружающей среде (улавливается примерно 60 процентов углекислого газа), но цена возрастает вдвое.

Черный и коричневый. Старейший и по-прежнему массовый (порядка трети от всех объемов в мире) способ промышленной выработки водорода — газификация угля. В результате получается синтез-газ (генераторный газ) — смесь монооксида углерода, водорода, углекислого газа, метана и водяного пара. Несмотря на меньшую продуктивность по водороду, чем в результате риформинга метана, газификация угля используется в тех регионах, где его в избытке. Процесс позволяет получать сразу несколько видов промежуточного сырья для химической промышленности, чем и удобен.

Бирюзовый. Один из самых многообещающих методов — пиролиз метана. Технологий множество, в лабораториях и на небольших производствах разные их вариации показали себя отлично. В ближайшие годы должен пройти проверку более крупными масштабами. Среди неоспоримых плюсов — практически отсутствующие выбросы парниковых газов и привлекательная расчетная стоимость. А углерод на выходе получается в твердой форме, так что его можно либо пустить на изготовление нанотрубок, либо продать (что повышает экономику процесса). Но большую часть все равно придется где-то захоронить, потому что при массовом производстве бирюзового водорода такие объемы технической сажи некуда девать. Зато твердую форму углерода прятать под землю проще, чем газ.

Оттенки красного (оранжевый, розовый, красный) — атомная энергетика, питающая электролизеры или установки термохимического разложения воды (этот вариант пока экспериментальный).

Желтый — получен путем электролиза с питанием от смешанных источников генерации (в некоторых вариантах классификации обязательно с преобладанием АЭС).

Без своего цвета — водород, получаемый как побочный продукт при производстве хлора, вырабатываемый из биомассы или с помощью ряда экспериментальных технологий.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Это может показаться неочевидным, но для производства водорода в перспективе у всех остальных цветов однозначно выигрывает зеленый. Да, его себестоимость высока, но зато установки для электролиза могут быть компактными и мобильными. Их можно установить там, где водород необходим в качестве энергоносителя или накопителя энергии. А электричество брать из местных возобновляемых источников — ветряков или солнечных панелей. Таким образом сразу нивелируются расходы на транспортировку водорода, которые существенно увеличивают его цену для потребителя. На фото: контейнерные электролизеры, питающиеся электричеством от ветряков / ©MAN Energy Solytions, H-TEC SYSTEMS

Комментируя перспективы методов производства водорода, генеральный директор ООО «Водородные технологии» АФК «Система», научный руководитель К НТИ при ИПХФ РАН Юрий Анатольевич Добровольский отметил важный нюанс:

— При взгляде на среднюю себестоимость производства водорода тем или иным способом важно учитывать, что это не окончательный ценник для потребителя. Очистка, хранение и транспортировка поднимают цену, как минимум, вдвое, а то и вчетверо. Поэтому кажущийся самым дорогим электролиз запросто может быть наиболее выгодным, если он используется прямо рядом с потребителями от местного источника электроэнергии. Промышленные процессы — паровая конверсия с улавливанием углекислого газа (голубой) и пиролиз (бирюзовый) — не могут «переехать» в каждый удаленный район или автобусный парк, а электролизер там установить можно.

Кроме того, при выборе доминирующего метода получения водорода в экономике все зависит от целеполагания. Если приоритет — экология, то любой подходящий по местным условиям метод, кроме серого, черного и коричневого, приемлем. Потому что они позволят радикально снизить нагрузку на окружающую среду от транспорта и промышленности. Что касается долгосрочного планирования (то есть, борьбы с глобальным потеплением), то необходимо минимизировать добычу и использование полезных ископаемых (при этом все равно будут выделяться парниковые газы), и электролиз становится пока безальтернативным.

Получается, что основой безуглеродной экономики может стать далеко не любой водород, а только зеленый, бирюзовый и, возможно, какой-то из красных. При этом важно учитывать, что он всегда будет вторичным энергоносителем, то есть переносить меньше энергии, чем было потрачено на его получение. Следовательно, вся промышленность и сфера потребления энергии должны стать гораздо эффективнее. К тому же придется радикально нарастить выработку электричества, чтобы покрыть те нужды, которые прежде закрывались углеводородами напрямую, в первую очередь выработку тепла.

Ложка дегтя в бочке светлого будущего

Но проблемы с водородом на его статусе вторичного энергоносителя не заканчиваются. Химические свойства самого распространенного во вселенной и легчайшего элемента превращают в настоящий кошмар его транспортировку и хранение. По этой самой причине, кстати говоря, почти весь используемый в современной промышленности водород производится прямо на месте потребления (фактически — в той же установке, где используется). А его носителем чаще всего выступает природный газ, он же метан.

Перво-наперво водород взрыво- и пожароопасен. Он легко улетучивается через мельчайшие трещины и прорехи в уплотнениях. Иногда просачивается через кристаллическую решетку материалов. Такие утечки без специального оборудования (газоанализаторов) обнаружить практически невозможно. Водород не имеет цвета и запаха, а горит невидимым пламенем, которое может приобрести окрас только в случае попадания в него посторонних примесей. Добавить одорант, как в случае с метаном, чтобы утечку можно было банально унюхать, на практике можно далеко не всегда. Любые загрязнения водорода приводят к отравлению катализаторов топливных элементов или тех промышленных установок, где он используется.

Создание отдельной водородной инфраструктуры для его хранения и транспортировки потребует существенных затрат, поскольку для работы с ним подходят далеко не все материалы: многие металлы в присутствии этого газа могут разрушаться, явление известно как «водородное охрупчивание». А требования к уплотнителям, вентилям и предохранительным клапанам жестче, чем для природного газа. Наконец, из-за наиболее низкой плотности водорода среди всех газов для его транспортировки нужно больше энергозатрат на сжатие или сжижение. Это решаемые инженерные задачи, но их необходимо учитывать.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Отдельная история — термоядерная энергетика, которая тоже основана на водороде, а точнее на его изотопах дейтерии и тритии. Исследования в этой области, безусловно, критически важны для современной физики и двигают прогресс. Но насчет практического использования управляемого термоядерного синтеза для выработки тепла и электричества оптимизм тает с каждым десятилетием все больше и больше. Слишком сложная затея оказалась, при этом еще и с не самыми ясными перспективами эффективности. На фото: горящая плазма в корейском токамаке KSTAR, наиболее яркие области — самые холодные, при температуре около 150 миллионов градусов плазма не излучает свет в видимом диапазоне / ©National Fusion Research Institute

Реальные перспективы

Самая высокая удельная энергия среди всех энергоносителей, доступных человечеству в промышленных масштабах, безусловно, делает водород очень привлекательным. Его сравнительно легко использовать в качестве накопителя энергии, а также производить с использованием возобновляемых источников энергии.

Дальнейшее развитие экономики, как Naked Science уже отмечал в материале, посвященном накопителям энергии, невозможно без радикального повышения эффективности энергетики и промышленности. Мир неуклонно движется в сторону все более глубокой переработки ресурсов, рециклинга и более полного использования первичной энергии. Параллельно с этим развиваются высокотехнологичные отрасли. Все это — сферы, где водород обязательно найдет себе место или уже давно нашел и его роль только увеличивается.

Но у водорода есть серьезные минусы, обусловленные его физическими и химическими свойствами. На пути хотя бы к частичному замещению углеводородов в качестве энергоносителей водород можно сделать зеленым — необходимые технологии разрабатываются, и даже сравнительно дешевым, если эти технологии станут широко используемыми. Но по себестоимости в масштабах всей экономики водород будет неизбежно проигрывать метану. Потому что он — вторичный энергоноситель и не может запасать больше энергии, чем было потрачено на его получение (по крайней мере, пока), особенно с учетом затрат на добычу первичной энергии (газа для пиролиза метана). Зато по сравнению с природным газом водород способен удобно накапливать энергию, синтезировать метан сложнее.

Источник

Показать полностью 6

С Днем Энергетика и наступающим Новым Годом!

С Днем Энергетика и наступающим Новым Годом! Энергетика (производство энергии), ТЭЦ, День энергетика, Поздравление, Гифка

С Днем энергетика, коллеги,

Сейчас поздравить вас хочу!

И пусть блестящие успехи

Всегда вам будут по плечу!

Желаю, чтобы вас ценили

За честный и нелегкий труд,

И больше раза в три платили

За свет, тепло и за уют!

Показать полностью
Отличная работа, все прочитано!